Modern autoregressive models

Figure 1. Image completions sampled from a PixelRNN.

PixelRNN

- Obecompose the data likelihood of an $n \times n$ image $p(x) = \prod_{i=1}^{n^2} p(x_i | x_{< i})$
- Each pixel conditional corresponds to a triplet of colors
 - → Further decompose per color (same as above)

$$p(x_{i}|x_{< i}) = p(x_{i,R}|x_{< i}) \cdot p(x_{i,G}|x_{< i}, x_{i,R}) \cdot p(x_{i,B}|x_{< i}, x_{i,R}, x_{i,G})$$

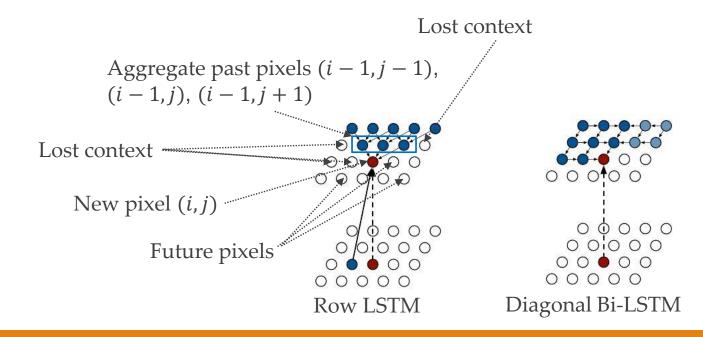
$$x_{i,R}|x_{< i}| x_{< i}|x_{< i}|x_{< i}|x_{< i}|x_{i,R}$$

- Model the conditionals $p(x_{i,R}|x_{< i})$, ... with 12-layer convolutional RNN
 - The MLP from NADE cannot easily scale and statistics are not shared
- Model the output as a categorical distribution
 - 256-way softmax

van den Oord, Kalchbrenner and Kavukcuoglu, Pixel Recurrent Neural Networks

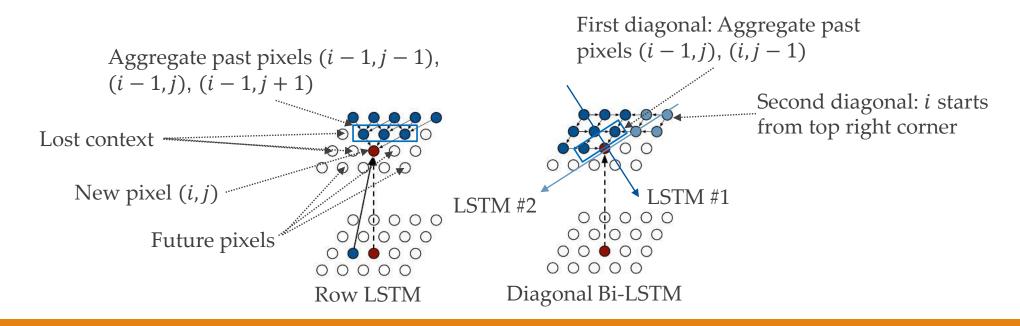
Row LSTM

- Row LSTM with 'causal' triangular receptive field
 - Per new pixel (row i) use 1-d conv (size 3) to aggregate pixels above (i-1)
 - The effective receptive field spans a triangle
 - Convolution only on 'past' pixels (i-1), not 'future pixels' \rightarrow causal
 - Loses some context



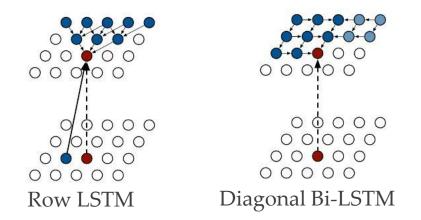
Diagonal BiLSTM

- Have two LSTMs moving on oppose diagonals
 - First diagonal: the convolution past is (i-1,j), (i,j-1)
- Combine the two LSTMs
 - recursively the entirety of past context is captured



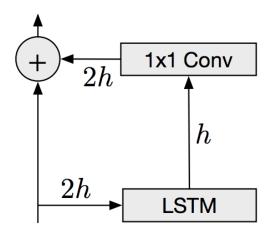
Why not a regular LSTM?

- It would require sequential, pixel-wise computations
 - Less parallelization
 - Slower training
- With Row LSTM and Diagonal BiLSTM we process one row at a time
 - Parallelization possible



Deep LSTMs with Residual connections

- Use 12 layers of LSTMs
- Add residual connections to speed up learning
- Although good modelling of $p(x) \rightarrow$ nice image generation
- Slow training because of LSTM, slow generation

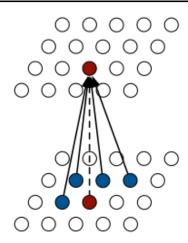


PixelRNN - Generations

Figure 1. Image completions sampled from a PixelRNN.

PixelCNN

- Replace LSTMs with fully convolutional networks
 - 15 layers
 - No pooling layers to preserve spatial resolution
- Use masks to mask out future pixels in convolutions
 - Otherwise 'access to future' → no 'autoregressiveness'
- Faster training as no recurrent steps required
 - → Better parallelization
 - Pixel generation still sequential and thus slow



PixelCNN

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Masking convolutions

van den Oord, Kalchbrenner and Kavukcuoglu, Pixel Recurrent Neural Networks

PixelCNN - Generations

Coral reef

PixelCNN - Generation

Sorrel horse

PixelCNN - Generation

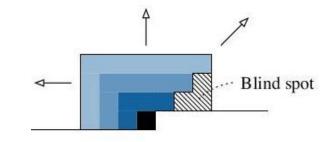
<u>Sandbar</u>

PixelCNN - Generation

<u>Lhasa Apso</u>

PixelCNN: Pros and Cons

- Faster training
- Performance is worse than PixelRNN as context is discarded
- The cascaded convolutions create a 'blind spot'
 - Use Gated PixelCNN to fix



- No latest space
- PixelCNN++ improves PixelCNN by (Salimans et al.)
 - Model output by discretized logistic mixture likelihood ← Softmax requires to many parameters and yields very sparse gradients
 - Condition on whole pixels, not colors
 - Architectural innovations

Autoregressive models: pros and cons

- Top density estimation
- They take into account complex co-dependencies
 - Potentially, better generations and more accurate likelihoods
- Autoregressive models are not necessarily latent variable models
 - They neither have necessarily an encoder nor learn representations
- Slow in learning, inference and generation
 - Computations are sequential (one at a time) → limited parallelism
 - E.g., to generate the next word we must generate past words first
- They may introduce artificial bias when assumed order is imposed